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Veloci ty f ields,  hydraul ic  r e s i s t a n c e s ,  and heat emi s s ion  coeff ic ients  a r e  cons idered  for  
the l amina r  flow of s t ruc tu ra l ly  v iscous  fluids with exponential  flow law, extended a lso  to 
a medium with a s ignif icant  appea rance  of e las t ic  p roper t i e s .  Methods of an exper imen ta l  
invest igat ion of the hydrodynamics  and heat exchange of non-Newtonian fluids a r e  d i s -  
cus s ed. 

1 .  G e n e r a l i z e d  E x p o n e n t i a l  F l o w  L a w  

Mathemat ica l  physics  models  of flowing media  a r e  cons t ruc ted  in mode rn  hydrodynamics  by means  
of a se t  of m a c r o s c o p i c  p roper t i e s .  Hence,  d ive r s e  flow domains ,  or  a di f ferent  formula t ion  in studying 
some  a spec t s  of the given flow, can be desc r ibed  by dif ferent  ma themat i ca l  models ,  s ta r t ing  f r o m  the 
pr inciple  of g r e a t e s t  s impl i c i ty  in descr ib ing  the p r i m a r y  a spec t  of the considered problem.  Thus,  for  
a suff icient ly rapid unbounded fluid flow around a solid body, the p r e s s u r e  d is t r ibut ion along the body 
outline is usual ly  desc r ibed  well  enough by the Eu le r  ideal fluid model ,  which p o s s e s s e s  just  one essen t i a l  
physical  p roper ty ,  the densi ty  p. At the s a m e  t ime,  the ae rodynamic  drag  and s t r e a m  p a r a m e t e r  d i s t r i -  
bution (velocity, t e m p e r a t u r e ,  impur i ty  concentrat ion) in the d i rec t  neighborhood of the body depend e s -  
sent ia l ly  on at  l eas t  one p rope r ty  of the medium,  the dynamic  v i scos i ty  p. 

A fluid with v i scos i ty  independent of the flow k inemat ics  is called Newtonian. An ideal gas is a c o m -  
pletely Newtonian fluid s ince its v i scos i ty  depends only on the the rmodynamic  s ta te  p a r a m e t e r s  and is not 
re la ted  to the genera l  t rans la t iona l  gas  motion. All other  r ea l ,  flowing media  a r e  subject  to the Newtonian 
f r i c t ion  law in e i ther  a definite r ange  of the flow p a r a m e t e r s  (for a number  of media ,  in all  cases  of p r ac t i -  
cal  in te res t ) ,  or  a lways  mani fes t  a dependence of the v i scos i ty  on the flow and offer  r e s i s t a n c e  to not only 
the tangential  but a l so  the no rm a l  s t r e s s e s .  The whole set  of such rea l  media  a r e  usual ly called non- 
Newtonian fluids. But namely  the d ive r s i t y  of the p rope r t i e s  and the mult ipl ic i ty  of such media  of mos t  
d ive r s e  chemica l  na ture  urgent ly  demand some  suff icient ly s imple  methods of descr ip t ion ,  while n e v e r -  
the less  re ta in ing the basic  physical  meaning of the phenomenon (including passage  to the l imit  to a New- 
tonian medium).  

An exponential  re la t ionship  between the flow and the f r ic t ion  is apparen t ly  suff icient ly f lexible and 
exact  for  the desc r ip t ion  of the quite numerous  c lass  of non-Newtonian media.  We called a cor responding  
c lass  of media  which did not mani fes t  e las t ic  p rope r t i e s ,  s t ruc tu ra l ly  v iscous .  I ts  hydrodynamic and 
thermokine t ic  dependences a r e  cons idered  concise ly  below. La te r  the possibi l i ty  is shown of extending this 
law to v i scoe la s t i c  media  as  well. 

The exponential  rheologica l  re la t ionship  for  s t ruc tu ra l ly  v iscous  fluids which have no not iceable  
e las t ic  p rope r t i e s  is 

r = exp(-- "~*), (1) 
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Fig ,  2 F ig .  1 

F ig .  1. The d e p e n d e n c e  gPT(T) fo r  a n u m b e r  of v i s c o e l a s t i c  f lu ids :  1) l i n e a r  p o l y e t h y l e n e  m e l t ,  t = 190~ 
= 5, n = - 4  [2] ;  2) Knee  Jo in t  ( synovia  of the  knee  jo int ) ,  r = 0, n = - 2  [3]; 3) p o l y e t h y l e n e  m e l t  p r i o r  

to the  beg inn ing  of r u p t u r e ,  t = 190~ r = 4, n = - 5  [2]; 4) 15% s o l u t i o n  of p o l y i s o b u t y l e n e  in  d e c a l i n ,  t 
= 50~ 6 = 3, n = - 2  [4]; 5) the  s a m e ,  t = 30~ 6 = 3, n = - 2  [4]; 6) 3% s o l u t i o n  p o l y a c r y l a m i d e  in w a t e r ,  
a u t h o r ' s  m e a s u r e m e n t s ,  r = 0 ,  n = - 1 ,  e T ,  1112/N ' sec ;  T, N / m  2. 

F ig .  2. V e l o c i t y  d i s t r i b u t i o n  f o r  l a m i n a r  f low: 1) B = 0 (Newtonian f luid) ;  f o r  B = 0.6:  2) A = 0.1; 3) 0.5; 
4) 1; 5) 3.3; fo r  B = - 1 . 5 :  6) A = 0.1; 7) 0.5; 8) 1; 9) 3.3; fo r  B = 0.9: 10) A = 0.1; 11) 0.5; 12) 1; 13) 2; fo r  
B = - 1 0 :  14) A = 0.1; 15) 1; 16) 2. 

w h e r e  

q)| - -  qD o q)| - -  % 

F o r  s m a l l  v a l u e s  of ~-*, the  f low d e p e n d e n c e  on the s h e a r  s t r e s s  can  be  a p p r o x i m a t e d  by a l i n e a r  law 

q) = q% + 01~ -- T~[I (2) 

If the liquid possesses noticeable elastic properties and the shear velocity is such that the difference 
between the normal stresses exceeds the tangential, the character of the dependence cp(~) changes. The 
flow increases rapidly as ~ grows, and the ga(T) curves are characterized by a noticeable concavity relative 
to the vertical axis. 

It can be assumed that an anisotropy in the normal stresses, which occurs as the shear velocity in- 
creases, exerts influence on the magnitude of the flow of viscoelastic fluids. Since the majority of tests 
shows that the normal stresses acting in a plane perpendicular to the flow direction I:)22 and P33 are equal 
or nearly so in magnitude, the degree of anisotropy in the normal stresses can be characterized bY the 
quantity 

PII -- P2~ ~ Pli  --P3a" 

A s  the  p r o c e s s i n g  of e x p e r i m e n t a l  r e s u l t s  shows  [2-4],  the  change  in  the  f low of v i s c o e l a s t i c  f lu ids  
c a n  be  d e s c r i b e d  by  an  equa t ion  of the  type  (2) i f  the  quan t i t y  

T = I" + (Pit  - -  P2'z), (3) 

i . e . ,  the  r e l a t i o n s h i p  

fi7 
(I)T = ~ = (Po + O,~T (4) 

i s  u sed  in  p l a c e  of r .  

To i l l u s t r a t e  th i s  s i t ua t i on ,  f low c u r v e s  of a n u m b e r  of f lu ids  p o s s e s s i n g  h igh  e l a s t i c i t y  a r e  r e p r e -  
s e n t e d  in  F ig .  i in  q~T(T) c o o r d i n a t e s .  

The  v e l o c i t y  p r o f i l e s  in channe l s  of s i m p l e s t  shape ,  the  h y d r a u l i c  d r a g  and hea t  e m i s s i o n  c o e f f i c i e n t s  
fo r  f l u id s  p o s s e s s i n g  the l i n e a r  f low law (2) have  b e e n  c o m p u t e d  e a r l i e r  [1, 7]. 
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Such fluids can evidently be considered as a l inear subclass  of the more  general  c lass  of media with 

an exponential flow law. 

2.  H e a t  E x c h a n g e  a n d  H y d r a u l i c  D r a g  f o r  a S t a b i l i z e d  

L a m i n a r  F l o w  of  F l u i d s  w i t h  a n  E x p o n e n t i a l  F l o w  L a w  

Let us consider  fluid flow in a c i rcu la r  tube. Integrat ion of the equation d W / d r  = - ~ r w ~  under the 
condition ~'1 = 0 resul ts  in the following velocity distr ibution law over the tube c ross  section: 

~ W(.~)= ~-  exp(--A) I §  --exp(--~A) g+  
= (5) 

I~ 0.25--6 ~ +2  B[exp  (--A)( 0"5+ -~ -  +--~--q- -~T) ] 1 ' 5  3 ' 

l 

- f where W = 2 . W(~)~d~ is the mean s t r eam velocity, 
0 

0T w qD| -- % 
A ~--- - -  andB = 

The resul t s  of computing the velocity profiles for  pseudoplastic (B > 0) and dilatant (H < 0) fluids 
a re  represented  in Fig. 2. For  pseudoplastic fluids the veloci ty profile is compressed  for A < 1, while 
for  A > 1 part  of the sect ion abutting the wall is occupied by a fluid with pract ical ly  constant v i scos i ty  
(nthe second Newtonian viscosityN), and the profile again s ta r t s  to approximate the parabolic. For  dilatant 
fluids compress ion  of the profile s ta r t s  at ra ther  higher values of the parameter  A. 

The dimensionless  heat emiss ion coefficient on the stabilized heat exchange section is determined 
under the condition of a uniform heat supply (0t/~x ~ const) by the relat ionship [5, 6] 

% 

Nu = 2 ~ dg . (6) 

0 

The resul ts  of computations performed using an electronic  computer  a re  represented in Fig. 3. The 
heat emiss ion  coefficients for pseudoplastic fluids are  somewhat higher than for Newtonian fluids, and 
lower for dilatant fluids. There  a re  ext remal  values on the curves  of the dependence Nu(A) which c o r r e -  
spond to those values of A for which the fluid flow pract ical ly  ceases  to vary.  However, the difference 
between the heat emiss ion coefficients of ord inary  and non-Newtonian fluids is quite insignificant in the 
whole range of pa ramete r  variation. Using the relat ionship (5), the hydraulic drag coefficient 

~ 8~w 
p~2 

can be represented  as 

Reo = 
16(1--B) 

where Re 0 = ~0PW. 2 .R 0. If the pa ramete r  A is t ransformed into A = f i ~ / 8 ,  where/3 = [0/(cpr -990)]PW 2, 
then (7) is rewri t ten  as follows: 

16(1--B) 

Re0 

8 3 

(7) 

(8) 

and it can be solved for  ~. The resul ts  of a computation obtained by using an electronic  computer  a re  
presented in Fig. 4. It is seen f rom this graph that the non-Newtonian proper t ies  of fluids a l ter  the hy-  
draulic drag coefficient essential ly for small  Re 0 numbers ,  while the influence of var iable  v iscos i ty  prac t i -  
cally ceases  to be felt as  Re 0 ~ Hecr.  

685 



NU 

, 

g'g ol ~ /,5 2 z,5 3 

Fig. 3 

/0o c, ,o"~] ] ], II 
6 i t  1 I I l i  lJ 

,oittvpr ; / 
a! ! \  ' ~ / t - " r  2 / 
,~kl ~ I ] . ~ . , ; ~  .J- 
~' j t 'k--fX\ I / t " t  I / "  ;, l~  

z I1. 

~162162 g 4, 8 8 1 0  e 2 4, 6 R e  

Fig. 4 

Fig. 3. Heat emiss ion coefficient for laminar  flow: 1) Nu = 4.36; 2) B = 0.2; 3) 0.6; 
4) 0.9; 5) - 1 . 5 ;  6) - 4 .  

Fig. 4. Hydraulic drag coefficient: 1) B = 0 (Newtonian fluid); 2)/3 = 1, B = 0.6; 3) /3 
=2 ,  B =0 .6 ;4 ) /~  = 1 ,  B =0.8;  5) fl =2 ,  B =0.8;  6) fl =1 ,  B =0.9;  7) /3 =4 ,  B =0.9;  
s7/3 = t ,  B = - 4 ;  9> p = ! ,  B = -1O. 

For  the values/3 = 1-4, the hydraul ic  drag coefficient at  B = 0.5-0.9 can be computed by means of the 
interpolat ion formula  

lg (100~) = Yo go-- 0.806 (ig Reo --  1), (9) 
2 

where 

Y0 = 2.806 0.956 
0.7 + 6  

The e r r o r  in the computation will hence not exceed 1-2%. 

B 2 . 

3. S t e a d y  L a m i n a r  F l o w  o f  V i s c o e l a s t i c  F l u i d s  

We consider  a flow steady at such a distance f rom the channel entrance that the s t r e ss  state of the 
fluid and the veloci ty  profile can be considered completely stabilized. 

If the re la t ion between the normal  and tangential s t r e s se s  can be expressed by simple dependences 
in the shear  velocity range under consideration,  then the velocity profiles a re  eas i ly  determined by inte- 
grating (4). 

For  the l inear v iscoelas t ic i ty  domain charac te r ized  by the relat ionship 

o/x  = ?,, 

the integrat ioa of (4) resu l t s  in the following express ion  for  the veIocity profile in a eircuZar tube: 

1_~2 4 2 0T~ w (1 +?,)(1--~3) 
W 3 ~o 

1 +  4 0Tx w (1+,,,~) 
5 ~o 

( l o )  

This express ion differs f rom that obtained ear l ie r  for s t ruc tura l ly  viscous fluids [1] in that the com-  
plex 0Vw/~0 is here  replaced by the quantity (0T'rw/r + ~/e). 
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Fig. 5. Velocity prof i les  for  a 3% po lyac ry lamtde  solution in water :  1) 
ve loc i ty  prof i le  for  Newtonian fluids; 2) computed veloci ty  profi le  for  a 3% 
po lyac ry lamide  solution in wa te r  for  (0T/P0)(1 + ~/e) = 2.3; 3) t e s t  values  
of the veloci ty  for  a 3% po lyac ry lamide  solution in water .  

Fig. 6 Tes t  r e su l t s  on the heat exchange for  a 3% solution of po lyac ry l -  
amide  in water :  1) computat ional  curve  fo r  a Newtonian fluid; 2) t es t  r e su l t s  
on heat  emi s s ion  to the s t r e a m  of a 3% po lyae ry lamide  solution in water .  

Correspondingly ,  the exp re s s ion  

where  

; =  l+-=-/ - 1 
1+yo  

Reo=q~oDp~,andl3r = O, p~2, 
% 

will be valid for  the hydraul ic  d rag  coefficient.  

In tegra t ing  (4) r e su l t s  a l so  in com pa ra t i ve ly  s imple  express ions  for  the cases  when the r e l a t ion-  
ship between the no rm a l  and tangential  s t r e s s e s  is  m o r e  complex,  for  example:  

a/~ = A + B~ (12) 

o r  

�9 * = e x p  - - ~  . (13) 

In p rac t ice ,  however ,  cases  a r e  quite often encountered when the quanti tat ive c h a r a c t e r i s t i c s  of the 
e las t ic  p rope r t i e s  of the fluid a r e  not known, and only its flow curve  has been measu red .  A ~_,wer-law de-  
pendence of the type 7 = kW n, which is physical ly  expl ici t ly  i n c o r r e c t  [1], is mos t  often used to app rox ima te  

m 

= coo + ~ 0n Tn (14} 

the flow curve.  

In terpola t ion  fo rmu la s  of the type 

not only sa t i s fy  the l imit  passage  conditions sufficiently c o r r e c t l y  f r o m  the physical  and ma thema t i ca l  v iew-  
points,  but a r e  a lso  suff icient ly convenient  f r o m  the purely  computat ional  viewpoint. 

It should be noted that  the ve loc i ty  prof i les  a r e  made f la t t e r  as the e las t ic  p rope r t i e s  of the fluid grow 
(the quantity 7e) ,  and the veloci ty  gradient  at  the wall  i nc r ea se s .  

Using the re la t ionsh ip  (14), the heat  e m i s s i o n  coeff icient  of non-Newtonian fluids for  the w a r m  initial 
sec t ion  of a tube can be de te rmined  by means  of the fo rmula  [7] 
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Fig. 7. Hydraulic drag coefficient in a 
1) fresh solution; 2) solution subjected 

Fig. 8. Hydraulic drag coefficient in a 
fresh solution; 2) solution subjected to 
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tube for a 0.02% polyethylene oxide solution: 
to destruction. 

tube for a 0.015% polyacrylamide solution: 1) 
destruct ion;  3) water. 

where 

Nu = Nu o X 1/3, (15) 

m m 

n=1 % w n=, n q- 4 q% 
(i6) 

As the tangential shear  s t r e s s  grows, the quantity • increases ,  however it exceeds 1 insignificantly. 
Thus, for pseudoplastic fluids with a l inear flow law • ~ 1.25 as ~- ~ 0% while • - -  1.5 in the domain of 
the quadratic flow law. Correspondingly,  the ult imate increase  in the heat emiss ion  coefficients is just 8 
and 15% as compared with their  values for Newtonian fluids. 

4 .  M e a s u r e m e n t  of  t-he V e l o c i t i e s ,  D r a g  C o e f f i c i e n t s ,  a n d  

H e a t  E m i s s i o n  C o e f f i c i e n t s  i n  N o n - N e w t o n i a n  F l u i d  S t r e a m s  

Measurement  of the velocity profiles in non-Newtonian fluid s t r eams  is complicated by a number 
of factors .  The fluid v iscoelas t ic  proper t ies  affect  the operation of the total head tube, and it is not c lear  
at  present  how to in terpre t  the readings obtained by using them in either the laminar  or turbulent flow 
regions.  Attempts to use a the rmoanemomete r  to investigate turbulent flow of weakly concentrated polymer 
solutions have also been unsuccessful .  

We used optical f low-visual izat ion methods to investigate the velocity fields in s t ructura l ly  viscous 
and viscoelas t ic  fluid s t reams .  In the f i r s t  se r ies  of tests  the fluid velocit ies were  measured  by an optico- 
mechanical  device [8], and in subsequent experiments  by using an electronic s t roboscope for hydrodynamic 
investigations. 

One of the measured  velocity profiles is represented  in Fig. 5 for the laminar  flow of a 3% poly- 
ac ry lamide  solution possess ing considerable  elast ic  propert ies .  Measurements  of these propert ies  by using 
an inst rument  of c o n e - p l a n e  type showed that the difference between the normal  s t r e s se s  exceeded the 
tangential s t r e s s e s  at the wall approximately one- to twofold at the shear  veloci t ies  holding in the exper i -  
ments.  The experimental  apparatus  used in this se r ies  of tests  was two tanks connected by a flat channel 
with 1 : 10 side ratio.  The tangential s t r e s s e s  at the channel wall varied between 10 and 110 N / m  2, which 
corresponded to flow veloci t ies  between 7 .4 .10  --4 and 7.1 "10 -2 m / s e c .  The velocity profiles obtained 
agreed with the computed ones, and in contras t  to [9, 10], no slip was noted near the wall in the tests. 

The resul ts  of heat-exchange tests  in the laminar  flow mode are  presented in Fig. 6. The heat emi s -  
sion coefficients of a 1% polyacrylamide solution were  measured in a c i rcu la r  tube of 1 cm diameter  and 
90 cm length under the condition of uniform heat supply to the tube surface.  The prepared polyacrylamide 
solution was poured into a large tank f rom which it was pumped through the working section under a i r  p r e s -  
sure.  The fluid d ischarge  was measured  by a volume method. The fluid tempera ture  at  the entrance to the 
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working section, the t empera tu re  along the length of the heated tube, and the t empera tu re  drop in the heat 
insulation in the working sect ion were  all measured.  Fluid heating in the working section is determined 
by computations taking account of the heat losses  of the heater.  

The tes ts  were  performed for different  values of the heat flux so that the heat emiss ion  coefficients 
could be determined under quas i i so thermal  conditions by extrapolat ion to zero  heat flux. The resuI t s  of 
tes ts  for quas i i so thermal  conditions a re  in good agreement  with the computational relat ionship (15). We 
noted a s imi lar  ag reement  ea r l i e r  in an investigation of the heat emiss ion  to carboxymethylce l lu lose  
solutions flowing in a rec tangular  channel [11]. It should be noted that the influence of the non-Newtonian 
fluid proper t ies  on the heat emiss ion  coefficient is weaker than the change in v iscos i ty  over the channel 
c ro s s  sect ion because of the heat supply. 

An elect ronic  s t roboscope was used for hydrodynamic investigations [12, 13] to obtain velocity p ro -  
files for turbulent non-Newtonian fluid flow. Weakly concentrated h igh-polymer  solutions were selected 
for the investigations: carboxymethylcel lu lose  (CMC), desoxyribonucleic acid (DNA), polyacrylamide 
(PAM), and polyethylene oxide. 

It has been shown in [14] that the introduction of polymer  admixtures  exer ts  the grea tes t  influence 
on the in termedia te  s t r eam domain. Subsequent measuremen t s  with polyethylene oxide solutions confirmed 
the conclusions made ear l ier .  An increase  in the size of the intermediate  domain, of the magnitude of 
the veloci ty  on its boundary with the domain of completely developed turbulent flow, should resul t  in a r e -  
duction in the hydraulic drag and heat emiss ion  coefficients.  

The resul t s  of measur ing  the hydraul ic  drag during ci rculat ion of polyethylene oxide solutions (0.02%) 
in a closed loop a re  represented  in Fig. 7. The tes ts  were  conducted in a d = 8 mm c i rcu la r  tube. The 
lower line on the graph cor responds  to the f i rs t  se r ies  of tests  with f r e sh  polyethylene oxide solution. 
The fluid d ischarge  in this se r ies  of tes ts  was gradual ly increased f rom values corresponding to the laminar 
flow mode to the highest possible. Rapid dest ruct ion of the solution s tar ted at the high flow speeds,  and as 
the d ischarge  was reduced the hydraulic drag coefficients were  ranged along the upper branch of the curve,  
where addition of a polymer  for low Reynolds numbers  in the turbulent flow domain a l ready has pract ical ly  
no effect on the hydraulic drag of the s t ream.  

Presented  in Fig. 8 a re  resul ts  of measur ing  the hydraulic drag in polyacrylamide solutions of 
0.015% concentration. The data obtained differ somewhat f rom the preceding in that the t ransi t ion f r o m  
the laminar  to the turbulent flow mode is ra ther  s t re tched out, the destruct ion of the solution is less,  and 
the introduction of an admixture  is felt in the turbulent mode even at low Re numbers .  

The resul t s  of investigating the pulsating velocity profiles over the whole channel c ross  section (in- 
cluding even the viscous sublayer) were  descr ibed part ial ly in [14] and were  discussed in detail in a paper 
published in this issue (p. 758). 

A ser ies  of tests  was conducted to determine the heat emiss ion  coefficients in a turbulent flow of 
polyethylene oxide and polyacrylamide solutions. The tests  showed that the coefficients of heat emiss ion  
to a s t r e a m  of solution can be severalfold lower than to a s t r eam of water  for the same values of the Re 
and Pr  numbers.  The reason  for this is the increase  in thermal  res i s tance  of the intermediate  s t r eam 
domain. 

T = T~tV~ 

TW 

q~0 

TI 

or1 = Pll - P22, 
o'2 = P I I  -- P33 

~v 
R 

=r/R 

NOTATION 

is the tangential shear  s t r e s s ,  N/m2;  
is the tangential shear  s t r e s s  at the wall, N/m2; 
is the flow at v ~ 0, m2/N. sec; 
is the flow at f ~ 0% m2/N . sec;  
is the coefficient of instability of the s t ructure ,  mr /N2,  sec; 
is the l imit  shear  s t r e s s  at which non-Newtonian proper t ies  s ta r t  to appear in the 
fluid, N / m  2; 

a re  the f i r s t  and second difference in the normal  s t r e s ses ,  respect ively ,  N/m2; 
is the veloci ty gradient,  sec-1; 
is the tube radius,  m; 
is the dimensionless  distance f rom the wall; 
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1"* = (~'cr - T ) / r c r ;  
if* = i f /Ta r ;  

0 T 
Tot 

ts the Reynolds number  de te rmined  at  ze ro  flow; 
ts  the c r i t i ca l  Reynolds  number ;  
ts  the magnitude of highly e las t ic  deformat ion;  
ts the coeff icient  taking account  of the s t ruc tu ra l  v i scous  p rope r t i e s  of the medium;  
ts the heat  e m i s s i o n  coeff icient  for  Newtonian fluids; 
ts  the Prandt l  number ;  
ts the hydraul ic  d rag  coefficient;  

is the ins tabi l i ty  coeff icient  of the e las t ic  s t ruc tu re ;  
is the c r i t i ca l  value of the tangential  shear  s t r e s s .  
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